IEECAS OpenIR  > 粉尘与环境研究室
An analytical solution for the population balance equation using a moment method
Yu, Mingzhou1,2; Lin, Jianzhong1; Cao, Junji2; Seipenbusch, Martin3
2015-02-01
发表期刊PARTICUOLOGY
ISSN1674-2001
卷号18页码:194-200
文章类型Article
摘要

Brownian coagulation is the most important inter-particle mechanism affecting the size distribution of aerosols. Analytical solutions to the governing population balance equation (PBE) remain a challenging issue. In this work, we develop an analytical model to solve the PBE under Brownian coagulation based on the Taylor-expansion method of moments. The proposed model has a clear advantage over conventional asymptotic models in both precision and efficiency. We first analyze the geometric standard deviation (GSD) of aerosol size distribution. The new model is then implemented to determine two analytic solutions, one with a varying GSD and the other with a constant GSD. The varying solution traces the evolution of the size distribution, whereas the constant case admits a decoupled solution for the zero and second moments. Both solutions are confirmed to have the same precision as the highly reliable numerical model, implemented by the fourth-order Runge-Kutta algorithm, and the analytic model requires significantly less computational time than the numerical approach. Our results suggest that the proposed model has great potential to replace the existing numerical model, and is thus recommended for the study of physical aerosol characteristics, especially for rapid predictions of haze formation and evolution. (C) 2014 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

关键词Self-preserving Aerosols Analytical Solution Taylor-expansion Method Of Moments Population Balance Equation
WOS标题词Science & Technology ; Technology
DOI10.1016/j.partic.2014.06.006
关键词[WOS]Large-eddy-simulation ; Brownian Coagulation ; Quadrature Method ; Size Distribution ; Asymptotic-behavior ; Expansion Method ; Temom Model ; Particles ; Regime ; Nanoparticles
收录类别SCI
语种英语
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Chemical ; Materials Science, Multidisciplinary
WOS记录号WOS:000349730200023
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ieecas.cn/handle/361006/9392
专题粉尘与环境研究室
通讯作者Lin, Jianzhong
作者单位1.China Jiliang Univ, Dept Phys, Hangzhou 310028, Peoples R China
2.Chinese Acad Sci, Inst Earth Environm, Xian 710075, Peoples R China
3.Karlsruhe Inst Technol, Inst Mech Proc Engn & Mech, D-76021 Karlsruhe, Germany
推荐引用方式
GB/T 7714
Yu, Mingzhou,Lin, Jianzhong,Cao, Junji,et al. An analytical solution for the population balance equation using a moment method[J]. PARTICUOLOGY,2015,18:194-200.
APA Yu, Mingzhou,Lin, Jianzhong,Cao, Junji,&Seipenbusch, Martin.(2015).An analytical solution for the population balance equation using a moment method.PARTICUOLOGY,18,194-200.
MLA Yu, Mingzhou,et al."An analytical solution for the population balance equation using a moment method".PARTICUOLOGY 18(2015):194-200.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
An analytical soluti(1567KB)期刊论文作者接受稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Mingzhou]的文章
[Lin, Jianzhong]的文章
[Cao, Junji]的文章
百度学术
百度学术中相似的文章
[Yu, Mingzhou]的文章
[Lin, Jianzhong]的文章
[Cao, Junji]的文章
必应学术
必应学术中相似的文章
[Yu, Mingzhou]的文章
[Lin, Jianzhong]的文章
[Cao, Junji]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。