IEECAS OpenIR  > 粉尘与环境研究室
Mitigation of severe urban haze pollution by a precision air pollution control approach
Yu, Shaocai1,2,3; Li, Pengfei1,2; Wang, Liqiang1,2; Wu, Yujie1,2; Wang, Si1,2; Liu, Kai3; Zhu, Tong4; Zhang, Yuanhang4; Hu, Min4; Zeng, Liming4; Zhang, Xiaoye5; Cao, Junji6; Alapaty, Kiran7; Wong, David C.8; Pleim, Jon8; Mathur, Rohit8; Rosenfeld, Daniel9; Seinfeld, John H.3
2018-05-25
发表期刊SCIENTIFIC REPORTS
卷号8期号:8151页码:1-11
文章类型Article
摘要Severe and persistent haze pollution involving fine particulate matter (PM2.5) concentrations reaching unprecedentedly high levels across many cities in China poses a serious threat to human health. Although mandatory temporary cessation of most urban and surrounding emission sources is an effective, but costly, short-term measure to abate air pollution, development of long-term crisis response measures remains a challenge, especially for curbing severe urban haze events on a regular basis. Here we introduce and evaluate a novel precision air pollution control approach (PAPCA) to mitigate severe urban haze events. The approach involves combining predictions of high PM2.5 concentrations, with a hybrid trajectory-receptor model and a comprehensive 3-D atmospheric model, to pinpoint the origins of emissions leading to such events and to optimize emission controls. Results of the PAPCA application to five severe haze episodes in major urban areas in China suggest that this strategy has the potential to significantly mitigate severe urban haze by decreasing PM2.5 peak concentrations by more than 60% from above 300 mu g m(-3) to below 100 mu g m(-3), while requiring similar to 30% to 70% less emission controls as compared to complete emission reductions. The PAPCA strategy has the potential to tackle effectively severe urban haze pollution events with economic efficiency.
WOS标题词Science & Technology
DOI10.1038/s41598-018-26344-1
关键词[WOS]HYBRID RECEPTOR MODELS ; PARTICULATE MATTER ; SOURCE APPORTIONMENT ; EMISSION INVENTORY ; CHINA ; CMAQ ; POLLUTANTS ; TRANSPORT ; HANGZHOU ; AEROSOLS
收录类别SCI
语种英语
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000433061300033
引用统计
文献类型期刊论文
条目标识符http://ir.ieecas.cn/handle/361006/5142
专题粉尘与环境研究室
作者单位1.Zhejiang Univ, Coll Environm & Resource Sci, Res Ctr Air Pollut & Hlth, Minist Educ, Hangzhou 310058, Zhejiang, Peoples R China
2.Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Zhejiang, Peoples R China
3.CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
4.Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China
5.Chinese Acad Meteorol Sci, Key Lab Atmospher Chem, CMA, 46 Zhong Guan Cun S Ave, Beijing 100081, Peoples R China
6.Chinese Acad Sci, Inst Earth Environm, Key Lab Aerosol Chem & Phys, SKLLQG, Xian, Shaanxi, Peoples R China
7.US Environm Protect Agcy EPA, Syst Exposure Div, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA
8.US Environm Protect Agcy EPA, Computat Exposure Div, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA
9.Hebrew Univ Jerusalem, Inst Earth Sci, Jerusalem, Israel
推荐引用方式
GB/T 7714
Yu, Shaocai,Li, Pengfei,Wang, Liqiang,et al. Mitigation of severe urban haze pollution by a precision air pollution control approach[J]. SCIENTIFIC REPORTS,2018,8(8151):1-11.
APA Yu, Shaocai.,Li, Pengfei.,Wang, Liqiang.,Wu, Yujie.,Wang, Si.,...&Seinfeld, John H..(2018).Mitigation of severe urban haze pollution by a precision air pollution control approach.SCIENTIFIC REPORTS,8(8151),1-11.
MLA Yu, Shaocai,et al."Mitigation of severe urban haze pollution by a precision air pollution control approach".SCIENTIFIC REPORTS 8.8151(2018):1-11.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Mitigation of severe(2735KB)期刊论文出版稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Shaocai]的文章
[Li, Pengfei]的文章
[Wang, Liqiang]的文章
百度学术
百度学术中相似的文章
[Yu, Shaocai]的文章
[Li, Pengfei]的文章
[Wang, Liqiang]的文章
必应学术
必应学术中相似的文章
[Yu, Shaocai]的文章
[Li, Pengfei]的文章
[Wang, Liqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。